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A note on the instabilities of a horizontal shear
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The instabilities of a free surface shear flow are considered, with special emphasis on
the shear flow with the velocity profile U? = U?

0 sech2(by?). This velocity profile, which
is found to model very well the shear flow in the wake of a hydrofoil, has been focused
on in previous studies, for instance by Dimas & Triantyfallou who made a purely
numerical investigation of this problem, and by Longuet-Higgins who simplified the
problem by approximating the velocity profile with a piecewise-linear profile to make
it amenable to an analytical treatment. However, none has so far recognized that this
problem in fact has a very simple solution which can be found analytically; that is, the
stability boundaries, i.e. the boundaries between the stable and the unstable regions
in the wavenumber (k)–Froude number (F)-plane, are given by simple algebraic
equations in k and F . This applies also when surface tension is included. With no
surface tension present there exist two distinct regimes of unstable waves for all values
of the Froude number F > 0. If 0 < F � 1, then one of the regimes is given by
0 < k < (1 − F2/6), the other by F−2 < k < 9F−2, which is a very extended region
on the k-axis. When F � 1 there is one small unstable region close to k = 0, i.e.
0 < k < 9/(4F2), the other unstable region being (3/2)1/2F−1 < k < 2 + 27/(8F2).
When surface tension is included there may be one, two or even three distinct regimes
of unstable modes depending on the value of the Froude number. For small F there
is only one instability region, for intermediate values of F there are two regimes of
unstable modes, and when F is large enough there are three distinct instability regions.

1. Introduction
The instabilities of a horizontal shear flow with a free surface are considered. While

the stability of shear flows in unbounded fluids has been widely studied, both linearly
and nonlinearly (see Maslowe 1981), the stability of a shear flow with a free surface
has received less attention and is less well understood. In a recent paper Longuet-
Higgins (1998) introduced a shear-flow model with a piecewise-linear velocity profile
to replace the original one in order to simplify the stability analysis. This idea was
applied to the shear flow with the velocity profile,

U? = U?
0 sech2(by?), (1.1)

the stability of which had previously been studied numerically by Triantafyllou &
Dimas (1989) and Dimas & Triantafyllou (1994), who adopted this profile to fit
experimental data of the shear flow in a wake of a hydrofoil. Instead of using this
elaborate numerical method of calculation Longuet-Higgins proposed to approximate
the velocity profile (1.1) by a piecewise-linear profile and found that then the solution
of the stability problem was reduced to determining the roots of a quartic polynomial.
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However, it turns out that the stability problem with the velocity profile (1.1) has
a very simple solution which can be found analytically. To be precise, the stability
boundaries in the wavenumber (k)–Froude number (F)-plane are given by simple
algebraic equations in k and F . In this note the effect of the surface tension is also
considered.

The plan of the paper is as follows. Section 2 introduces the basic equations and
some general results concerning the stability of a shear flow with a free surface. In
§ 3 the shear flow with the velocity profile (1.1) is discussed both with and without
surface tension. The stability boundaries for the piecewise-linear velocity profile used
by Longuet-Higgins to approximate the profile (1.1) are calculated in § 4, and a
comparison with the results for the profile (1.1) is made.

2. Mathematical formulation
The basic flow velocity vb is assumed to be directed along the x?-axis and varies in

the vertical direction which is the y?-direction, i.e. vb = U?(y?)i, where i is the unit
vector in the x?-direction. The fluid is assumed to be homogeneous, incompressible
and inviscid. In this note we will consider only perturbations of the normal mode
type and then, since Squire’s transformation holds with a rescaling of the physical
parameters (Yih 1955), only the two-dimensional stability problem need be solved. It
is well known that three-dimensional perturbations which are not of the normal mode
type, and which show an algebraic growth with time, do occur in shear flows confined
between rigid walls (Ellingsen & Palm 1975). Such perturbations are most probably
also present in the free surface shear flow problem, but are beyond the scope of this
note.

Since we consider only two-dimensional perturbations a streamfunction ψ?(x?,y?,t?)
can be introduced. The linearized equation for the streamfunction is(

∂

∂t?
+U? ∂

∂x?

)
∇2ψ? −U?′′ ∂ψ?

∂x?
= 0. (2.1)

This equation is subjected to the dynamic and the kinematic boundary condition at
the free surface y? = ζ?(x?, t?). The linearized boundary conditions at the free surface
are (

∂

∂t?
+U? ∂

∂x?

)
u+U?′v = −g ∂ζ

?

∂x?
+
τ

ρ

∂3ζ?

∂x?3

v =

(
∂

∂t?
+U? ∂

∂x?

)
ζ?

 at y? = 0, (2.2)

where u = ∂ψ?/∂y? and v = −∂ψ?/∂x? are the perturbation velocity components in
the x?- and the y?-directions, g is the acceleration due to gravity, ρ the density and τ
the surface tension. Prime denotes differentiation with respect to y?. Also,

ψ?(x?, y?, t?)→ 0 when y? → −∞. (2.3)

These equations are made dimensionless by introducing the velocity scale U?
0 = U?(0),

the length scale H , which is a characteristic length for the variation of U?(y?)
with depth, and the time scale H/U?

0 . In the following we work with dimensionless
quantities and U, ψ(x, y, t), x, y and t denote the shear flow velocity, the steamfunction,
the coordinates and the time respectively.



The instabilities of a horizontal shear flow with a free surface 339

We consider a wave solution of the form

ψ(x, y, t) = φ(y) exp {ik(x− ct)}, (2.4)

where φ(y) is the amplitude function, k the wavenumber and c the wave velocity.
Equation (2.4) is introduced into the dimensionless version of (2.1), (2.2) and (2.3) to
obtain the equations which φ has to satisfy,

(U(y)− c)(φ′′ − k2φ)−U ′′(y)φ = 0, −∞ < y < 0, (2.5)

(1− c)2φ′ =
[
U ′(0)(1− c) + F−2(1 + Tk2)

]
φ at y = 0, (2.6)

φ→ 0 when y → −∞, (2.7)

where F = U?
0/(gH)1/2 is the Froude number and T = τ/(ρgH2).

Equation (2.5) is the Rayleigh equation. Equation (2.6) is obtained from the dynamic
and the kinematic boundary condition at y = 0 as given by (2.2). Equations (2.5)–(2.7)
may have neutral solutions which form the stability boundaries in the (k, F)-plane. Let
φs, ks and cs denote the amplitude function, the wavenumber and the wave velocity of
a neutral solution. Yih (1972) showed that if U(y) is a monotonic function of y and
Umin < cs < Umax then cs = U(ys), where ys is an inflection point of U(y). Yih’s proof,
however, does not exclude possible neutral solutions with wave velocities cs = Umin

and cs = Umax.
To determine on what side of the neutral curve in the (k, F)-plane there is instability

we have to know the stability characteristics in the neighbourhood of the curve, which
can be achieved by a perturbation of the known neutral solution. Suppose that there
exists an unstable solution near the neutral one and that the wave velocity can be
expanded in a series in powers of (k − ks), i.e.

c− cs = c1(k − ks) + · · · , (2.8)

where c1 = c1r + ic1i is a constant.
Both the unstable and the neutral solution satisfy (2.5)–(2.7), from which it follows

that

φs(0)φ′(0)− φ′s(0)φ(0)− (c− cs)
∫ 0

−∞
U ′′φsφ

(U − cs)(U − c) dy

−(k2 − k2
s )

∫ 0

−∞
φsφ dy = 0. (2.9)

The first two terms are the contribution from the free surface condition at y = 0. If
F = 0 this contribution is equal to zero. If we let F 6= 0 and introduce (2.8) into (2.9)
we find that c1 must satisfy the equation[

U ′(0)φ2
s (0)

(1− cs)2
+

2(1 + Tk2
s )φ

2
s (0)

F2(1− cs)3
− lim

c→cs

∫ 0

−∞
U ′′φ2

s

(U − cs)(U − c) dy

]
c1

−2ks

[∫ 0

−∞
φ2
s dy − Tφ2

s (0)

F2(1− cs)2

]
= 0. (2.10)

This expression for c1 can be used to determine on what side of the neutral curve
there is instability. Let U(y) be a monotonic function of y and let U(−∞) = 0.
Then Umin = 0 and Umax = U(0) = 1. If U(y) has an inflection point at ys, where
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−∞ < ys < 0, and there exists a neutral solution with cs = U(ys) then

c1 = 2ks

[∫ 0

−∞
φ2
s dy − Tφ2

s (0)

F2(1− cs)2

](
R − iI

R2 + I2

)
, (2.11)

where

R =
U ′(0)φ2

s (0)

(1− cs)2
+

2(1 + Tk2
s )φ

2
s (0)

F2(1− cs)3
− P

∫ 0

−∞
U ′′φ2

s

(U − cs)2
dy,

I = −πU
′′′(ys)φ2

s (ys)

(U ′(ys))2
.

P in front of the integral sign means the principal value of the integral. When
the integral in the coefficient of c1 in (2.10) is evaluated Plemelj’s formula (see
Muskhelishvili 1953) has been used. On the instability side of the neutral curve
ci = c1i(k − ks) > 0, which together with the expression for c1i given by (2.11) yields
the instability side.

If there exist neutral solutions with cs = Umin = 0 and cs = Umax = 1 then c1

given by (2.10) is real if it exists, which means that ci is of a higher order in (k − ks)
than cr is. Then, in order to determine the instability side of the neutral curve the
expression for c1 can be used together with Howard’s semicircle theorem, which was
shown by Yih (1972) to be applicable also for shear flows with a free surface. This is
demonstrated for the velocity profile (1.1).

3. The velocity profile U? = U?
0 sech2(by?)

The dimensionless version of this velocity profile, which is to be introduced into
(2.5)−(2.7), is U(y) = sech2 (y), where we have taken the length scale H to be b−1. We
introduce the new variable η = tanh (y) into (2.5)−(2.7) and obtain

(1− η2 − c)
{

(1− η2)φ′′ − 2ηφ′ − k2

1− η2
φ

}
− (6η2 − 2)φ = 0, −1 < η < 0, (3.1)

(1− c)2φ′ = F−2(1 + Tk2)φ at η = 0, (3.2)

φ = 0 at η = −1, (3.3)

where the prime now denotes the differentiation with respect to η.
We have the following three options for neutral solutions: cs = U(ηs) = 2

3
, where ηs

is the inflection point of the velocity profile, cs = 0 and cs = 1. If we put cs = 2
3

and
cs = 0 into (3.1) we find that in both cases we have to solve the following equation to
find the neutral solution φs:

(1− η2)φ′′ − 2ηφ′ +
(

6− m2

1− η2

)
φ = 0, (3.4)

where m2 = k2 when cs = 2
3

and m2 = 4 + k2 when cs = 0.
For m = 0 this is the Legendre equation with the solution P2(η), the Legendre

polynomial of degree two, which is finite at η = −1. For m 6= 0 this is the associated
Legendre equation, which, when m = 1 and m = 2, has the solutions P 1

2 (η) and P 2
2 (η),

the associated Legendre functions of the first kind, which are finite at η = −1. These
solutions, however, satisfy the boundary condition at η = 0 only in the extreme cases,
F = 0 (φs = P 1

2 ) and F = ∞ (φs = P2 and φs = P 2
2 ). However, it can be shown that
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Figure 1. Stability diagram for the velocity profile U = sech2 (y). No surface tension, i.e. T = 0.
The shaded regions are the unstable regions. The curves (a) and (c) are the loci of the neutral
solutions with velocity cs = 2

3
, and the curve (b) the locus of the neutral solutions with cs = 0.

(3.4) has a simple closed-form solution for all values of m> 0, satisfying the boundary
condition at η = −1, i.e.

φs(η) =

(
1 + η

1− η
)m/2 (

3η2 − 3mη + m2 − 1
)
. (3.5)

(We see that φs(−1) is finite but not zero when m = 0; φs(−1) = 2P2(−1).)
We will consider the two cases, T = 0 (no surface tension), and T 6= 0 (surface

tension present).

(i) T = 0
If we put c = cs = 2

3
or c = cs = 0 and φs given by (3.5) into (3.2) we find that m has

to satisfy the equation

m3 − 4m =
α

F2
(m2 − 1), (3.6)

where α = 9 when cs = 2
3
, and α = 1 when cs = 0.

The solutions of (3.6) can be considered as the intersections between the graphs of
the polynomials on the left-hand side and on the right-hand side of (3.6) respectively,
which clearly shows that (3.6) has one solution m1(α)6 1 and one m2(α)> 2. (We are
only interested in the solutions where m> 0.) This yields two neutral solutions with
wave velocity cs = 2

3
: one with wavenumber ks = m1(9) and one with wavenumber

ks = m2(9). However, there is only one neutral solution with wave velocity cs = 0 and
wavenumber ks = (m2

2(1) − 4)1/2.
When F = 0 there is only one solution m1(α) = 1 of (3.6) which yields the neutral

solution with cs = 2
3

and ks = 1, and no neutral solution with cs = 0. When F = ∞
then m1(α) = 0 and m2(α) = 2, and there are two neutral solutions with cs = 2

3
– one

with ks = 0 and one with ks = 2 – and one neutral solution with cs = 0 and ks = 0.
In terms of the wavenumber we get the following equations to be solved when

cs = 2
3

and when cs = 0:

F2k3 − 9k2 − 4F2k + 9 = 0, (3.7)
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F2k2
√
k2 + 4− k2 − 3 = 0. (3.8)

The solutions of (3.7) and (3.8) are plotted in figure 1, giving the stability boundaries
in the (k, F)-plane: two curves, labelled (a) and (c), on which cs = 2

3
and one, labelled

(b), on which cs = 0. Since U ′′′(ηs) < 0 (2.11) shows that c1i < 0 and then there
is instability to the left of the neutral curves (a) and (c). When cs = 0 numerical
calculations show that c1r given by (2.10) is greater than zero, which together with the
semicircle theorem yields that there is instability to the right of the neutral curve (b).

In addition to these neutral solutions there is one with cs = 1 and ks = 0 as well;
the amplitude function being φs = η2. This solution is valid for all F . Both φs(0) = 0
and φ′s(0) = 0 so the contribution from the surface condition at y = 0 in (2.9) is equal
to zero in this case. However, the integrals in (2.10) do not exist so this formula for
c1 is not applicable in this case. However, close to this neutral solution there exists
an unstable solution which is found to be

φ(η) = (1− η2)k/2[η2 − c̃+ kθ(η) + · · ·], (3.9)

where c = 1− c̃, k � 1 and |c̃| � 1. We find that c̃ = c̃r + ic̃i = (kπ/4)2/3( 1
2
− i 1

2

√
3),

which shows why the expression for c1 given by (2.10) does not apply in this case;
our assumption expressed by (2.8) is simply not valid. θ(η) is easily found, but the
expression is lengthy and will not be given here. Notice that the solution given by
(3.9) satisfies the boundary condition at η = −1, which the neutral solution does not;
φ(η) given by (3.9) lies close to φs = η2 for all η 6= −1.

The above analysis shows that there are two distinct regimes of unstable modes
for a given Froude number, previously referred to as Branch I and Branch II by
Triantyfallou & Dimas (1989): Branch I at low wavenumbers and Branch II at higher
wavenumbers. Branch I and Branch II are separated for all values of the Froude
number; they never merge. Branch I is bounded to the left by k = 0 and to the right
by k = m1(9), and Branch II is bounded to the left and to the right by k = (m2

2(1)−4)1/2

and k = m2(9) respectively. When F = 0 only Branch I is present. When 0 < F � 1
it follows from (3.7) and (3.8) that the wavenumbers of the Branch I modes and
the Branch II modes lie in the regions 0 < k < (1 − F2/6) and F−2 < k < 9F−2

respectively. When F � 1 we find that the Branch I region is 0 < k < 9/(4F2) and
the Branch II region is given by (3/2)1/2F−1 < k < 2 + 27/(8F2). We see that when
F is increasing both regions shrink and in the end when F = ∞ then Branch I has
shrunk to a point and only Branch II modes are left with wavenumbers in the region
0 < k < 2.

(ii) T 6= 0
In this case we find that the wavenumbers of the neutral solutions with cs = 2

3
are

given by the equation

9Tk4 − F2k3 + 9(1− T )k2 + 4F2k − 9 = 0, (3.10)

and the wavenumbers of the neutral solutions with cs = 0 by

Tk4 − F2k2
√
k2 + 4 + (1 + 3T )k2 + 3 = 0. (3.11)

Given T , (3.10) and (3.11) yield the stability boundaries in the (k, F)-plane: two
curves, labelled (a) and (c), on which cs = 2

3
and one, labelled (b), on which cs = 0.

For T = 0.5 these stability boundaries are plotted in figure 2. The neutral curve (b)
has a minimum at k = k1 = 2.035 and F = F1 = 1.362, and the neutral curve (c) a
minimum at k = k2 = 3.59 and F = F2 = 4.996. Comparing figure 1 and figure 2
shows that the surface tension has little influence on the Branch I, but it affects the
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Figure 2. Stability diagram for the velocity profile U = sech2 (y). Surface tension present, T = 0.5.
The shaded regions are the unstable regions. The curves (a) and (c) are the loci of the neutral
solutions with velocity cs = 2

3
, and the curve (b) the locus of the neutral solutions with cs = 0. The

points (k1, F1) and (k2, F2) are the minimum points of the curves (b) and (c) respectively.

Branch II considerably. We see that when F < F1 there are no Branch II modes
so the surface tension has stabilized these unstable modes which are present when
T = 0. Only Branch I modes exist when F < F1. When F1 < F < F2 there are again
two distinct regimes of unstable modes. Now the Branch II region is bounded by a
neutral solution with cs = 0 both to the right and to the left. For a given F > F2 there
are three separated instability regions on the k-axis, a small Branch I region close to
k = 0, a Branch II region bounded by the neutral solution with cs = 0 to the left and
the neutral solution with cs = 2

3
to the right, and a Branch III region bounded by the

neutral solutions with cs = 2
3

and with cs = 0 to the left and to the right respectively.
Applying the perturbation formulae (2.10) and (2.11) yields instability on the shaded
side of the neutral curves.

4. Comparison with the piecewise-linear profile
Longuet-Higgins approximated the velocity profile (1.1) by a piecewise-linear profile

of the form

U?(y?) =

 U?
0 , −H1 < y? < 0

Ω(y? +H2), −H2 < y? < −H1

0, y? < −H2,
(4.1)

where U?
0 = Ω(H2 − H1). The stability problem is then reduced to determining

the roots of a quartic polynomial. If the following dimensionless quantities are
introduced: F = U?

0/(gH)1/2, h1 = H1/H , h2 = H2/H , k = k?H and c = c?/U?
0 , where

H = (H1 +H2)/2, then this equation reads

a4(c− 1)4 + a3(c− 1)3 + a2(c− 1)2 + a1(c− 1) + a0 = 0, (4.2)

a0 =

(
Ak − A2B

λ1

)
(λ1 − 1),
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Figure 3. The shaded regions are the unstable regions for the velocity profile U = sech2 (y) with no
surface tension present. The dashed lines are the stability boundaries for the piecewise-linear profile.

where

A =
1

2(h2 − h1)
, B = (λ1 − λ2), λi = exp (−2khi),

a1 = (−k2 + ABk), a2 = −k2 + F2k

(
Ak − A2B

λ1

)
(λ1 + 1),

a3 = F2(k3 + ABk2), a4 = F2k3.

To find the stability boundaries in the (k, F)-plane we have to solve (4.2) together
with the equation

4a4(c− 1)3 + 3a3(c− 1)2 + 2a2(c− 1) + a1 = 0. (4.3)

Longuet-Higgins approximated the velocity profile (1.1) by taking h1 = 0.1977 and
the dimensionless b = 0.8814. The stability boundaries have been calculated for this
piecewise-linear profile and are shown in figure 3. Also, the stability boundaries for
the original profile (1.1) are shown in figure 3, where the difference in the length scale
H used in this note (see § 3) and that used by Longuet-Higgins has been accounted for.
We see that the piecewise-linear profile has much narrower bands of unstable modes
than the original profile, which is especially emphasized at low Froude numbers.

Longuet-Higgins’ method can be applied to many different smooth profiles, and
the ratio H1/H2 in the piecewise-linear velocity model will vary according to the
profile which it approximates; this ratio being 0.11 for the sech2-profile. In addition
to being flexible as demonstrated in the paper of Longuet-Higgins (1998) the method
also provides an easy way to calculate the growth rates of the unstable modes of the
piecewise-linear profile. However, it should be kept in mind that this model may give
narrower bands of unstable modes than the original profile which was also noted by
Morland, Saffman & Yuen (1991) for the case of the wind-induced drift current.

5. Conclusions
In this note it is shown that a complete picture of the regimes of unstable modes of

the velocity profile (1.1), which models the current profile in the wake of hydrofoils,
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can be achieved very easily. It turns out that the neutral wave solutions which form the
boundaries of the unstable regimes can be found analytically, and their wavenumbers
are given by simple algebraic equations. In fact the stability boundaries are more
easily obtained for this profile than for the piecewise-linear profile used by Longuet-
Higgins to approximate the original one. If surface tension is absent there are two
distinct regimes of unstable modes, Branch I and Branch II, for all Froude numbers
not equal to zero. The inclusion of surface tension alters the picture considerably.
Now there may be one, two or even three separated regimes of unstable modes for
a given Froude number, depending on the value of the Froude number. For small
Froude numbers only Branch I is left; the unstable Branch II modes, which are
present when there is no surface tension, have now been stabilized by the surface
tension. For intermediate Froude numbers there are two regions of unstable modes,
Branch I and Branch II; the range of the wavenumbers of the unstable Branch II
modes has been extended by the inclusion of the surface tension for almost all values
of the Froude number. For large Froude numbers there are three distinct instability
regimes, Branch I, Branch II and Branch III. It is found that for all Froude numbers
the Branch I regime is little affected by a moderate surface tension T .

We notice that ‘the principle of the exchange of stabilities’ (i.e. c = 0 on the stability
boundaries) is not valid for this profile. Such a transition to instability occurs only
across one of the curves which form the stability boundaries.

The regimes of the unstable modes of the piecewise-linear profile, which was used
by Longuet-Higgins to replace the original one, have also been calculated. It is found
that these instability regions fit poorly with those of the original profile, especially the
Branch II region at low Froude numbers. We also notice that while the wave velocity
is constant along the curves which form the stability boundaries for the velocity
profile (1.1) this is not so for the piecewise-linear profile.

The formula for c given in § 2 yields the stability characteristics near the neutral
curves. To obtain detailed information on the unstable regimes away from the neutral
curves the eigenvalue problem (2.5)–(2.7) has to be solved numerically. However, it
may be of help to know the value of c near the neutral curve since it can be taken
as the start value of c in a numerical iteration, as was done by Engevik, Haugan &
Klemp (1985) where a similar problem was considered.

The velocity profile (1.1) is exceptional in the sense that the neutral solutions which
form the stability boundaries can be found analytically, which is not true for most
of the smooth velocity profiles. In the general case the stability problem has to be
handled numerically.

The assistance of Mr T. Eldevik in making the figures is acknowledged.
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